West Virginia
University

Using Static Code Analysis
Tools for Detection of Security
Vulnerabilities

Katerina Goseva-Popstajanova &
Andrel Perhinschi

Lane Deptartment of Computer Science
and Electrical Engineering

West Virginia University
Morgantown, WV

West Virginia
University

Acknowledgements

This material is based upon work supported
In part by NASA V&V, Fairmont, WV

We thank Keenan Bowens, Travis Dawson, Roger
Harris, Joelle Loretta, Jerry Sims and Christopher
Williams for their valuable input and feedback.

¥ Information assurance and IV&V

= NASA develops, runs, and maintains many
systems for which one or more security attributes
(1.e. confidentiality, integrity, availabllity,
authentication, authorization, and non-repudiation)
are of vital importance

* Information assurance and
cyber security have to be
Integrated In the traditional
verification and validation
pProcess

West Virginia
University

Static code analysis

= Static analysis of source code provides a scalable
method for code review

* Tools matured rapidly in the last decade

 from simple lexical analysis to more complex and
accurate techniques

* [n general, static analysis problems are
undecidable (i.e. it is impossible to construct an
algorithm which always leads to a correct answer)
- False negatives ' :
 False positives

West Vir ginia

University

To examine the ability of static
code analysis tools to detect
security vulnerabillities

West Virginia
University

Approach

= Surveyed the literature and vendor provided
iInformation on the state-of-the-art and practice of
static code analysis tools
* 15 commercial products
* 8 tools licensed under some kind of open source license

= Selected three tools for detailed evaluation

 To fully use the provided functionality all three tools
require a build to be created or at least the software under
test to be compiled
» Performance was evaluated using
« Micro-benchmarking test suites for C/C++ and Java
* Three open source programs with known vulnerabilities

c3
3.9
3 <
5 g
25

QD

EVALUATION
BASED ON THE
JULIET TEST
SUITE

Juliet test suite

= Micro-benchmarking suite which covers large
number of CWEs

« Each CWE (Common Weakness Enumeration)
represents a single vulnerability type

* Created by NSA and made publicly available at the
NIST Web site

= C/C++ suite (version 1.1)
« 119 CWEsSs
« 57,099 test cases

= Java suite (version 1.1.1)
« 113 CWEs
« 23,957 test cases

West Virginia
University

Juliet test suite

* This presentation is focused on the CWEs covered
by all three tools

« 22 common C/C++ CWEs among the three tools
(~21,000 test cases)

* 19 common Java CWEs among the three tools (~7,500
test cases)
= Two of the tools covered significantly more CWEsS
* 90 C/C++ CWEs (~34,000 test cases)
« 107 Java CWEs (~16,000 test cases)
* Results were similar to the ones presented here

West Virginia
University

Automatic assessment

Parse each CWE
directory & assemble a
list of test cases

Run each tool on
the Juliet test suite

U

Transform tool’s
output in a common
format

U 9.

Parse the output & compute
the confusion matrix

A\ Confusion matrix & metrics

West Virginia
University

Reported No warning/error
vulnerability reported
Actual True Positives False Negatives
vulnerability (TP) (FN)
No vulnerability False Positives True Negatives
(good function/method) (FP) (TN)
, .. TN+TP
% of functions that are classified correctly Accuracy =
TN+FN+FP+TP
. . . TP
Probability of detecting a vulnerability (recall) PD =
TP +FN
Probability of misclassifying a good function pE — FP
as a bad function (false alarm) TN + FP
How close is the result to the \/(O —PF)* +(1-PD)?

ideal point (pf, pd)=(0,1) Balance =1- N

C/C++ CWEs

Accuracy

West Virginia

University

The three

tools have
performance
with Tool C

similar

performing

slightly better

Tool A

=
&
[

Tool C

dooy apuiu| (SER)

UUo Jon Adowaly aald (055)

a|qeELEA pPasnUM [E95)
YIRS Jo WINaY (Za5)

apod peaq (1o95)
"o pealsul Suuedwon (e
“1padlooul o asn (0E)
CasED YNe jag Buissi i (24 1)
o d TINN (941
"1a3U|04 PRLI00u]| (B0t
"UD Joazs Jo s (Lo
CpazRIMUIUN JO 85 (L5
aaldlayy asn (9T

aald aqnog (5T

HEa] Adowan (Tot)
TI0aag payzaysun (T6E)
NOLD0L (£9E)
“A(IUB Byl Jo 35 (Z 4T
“UOEIUNL] IaWNE (f6T)
"I LD Pa)oauosU) (FET)
“1ayyng paseg deay (22 1)
uolpalu| puewwWoD 50 (8]

0.59, Median = 0.63

Tool A: Range [0.27,0.77], Average

0.67, Median = 0.64

0.72, Median = 0.64

Range [0.50, 0.87], Average

Tool C: Range [0.41,1], Average

Tool B:

N

Recall: C/C++ CWEs

West Virginia
University
Each tool has 0%
oo recall for some
90.0% +— CWEs
80.0% 1
70.0% — 3 . —
= B0.0% — 1 —
8 so0u +———— 4+ +—F4—4—
& ol T For some CWEs
S00% — 1T T 01 1 (i.e.,197, 391,
k| Tl Bd N Tool A
w00% +—pF-—1+ 17— -|- - 1 478, 480, 482,
0.0%, | . B . - i | —— . ! B TocolB
c 4§ cEZosxwowTcwtateEeEeca 835) all three
o = o o W w o w ow g £ oW 9 5 U = o o
EEEEEEEBII-EH—ﬁESE'ﬂSEﬁ“Q Teol C 0
= o — — [. — —
2258585225823 382828z22%23 tools have 0%
—W'UE'EI—EDJL'EEE'_—'NEEE =
TEizc-c2E27s55E355 2,253 ¢2¢% recall
P e E Tt omEEgsg8c w8 = JwEZdE 38 =
ESE B -ssiz°253F8Es5s5R=530
ST 23z 8Tz ci=zfgeE Tmel
g§2c8 & T 5§ =8 Ta:
..—_.,":',.?':""H —_ L = o o = =
=8 2 = £ 5 8 g Accuracy on Its
= w =
=

Tool A: Range [0, 1], Average =0.21, Median =0.14
Tool B: Range [0, 0.87], Average = 0.26, Median =0.10

Tool C: Range [0,1], Average = 0.39, Median = 0.42

own is not a good
metric for tools’
performance

Tool C has
noticeably
lower false
positive rate
than Tools A
and B

C/C++ CWEs

]
L]
Tool A

B TocolB

y of false alarm

Q0.0%
80.0%
70.0%
&0.0%

' Probabll

West Virginia

o Aupqeqoid

University

Tool C

dooq ayuiyu| (gER)
“uo jon Adowaly a4 [065)
a|qeLEA pasnun (£95)
“HOBIS JO UINJa Y [F95)
apod peaq (195)
“jo peasY| Sunedwod (Z8t)
" asI0ou] 40 85 02 1)
"asEa I Ne Jag SuissIW 184)
mdaulod TINN (941
“1ajulng Pallmu| (gat)
"UD Joazls jo asn (fat)
CpRIIERUIUM 4O 35 (£ 51
Baldlayy asn 9Ty
aald aqnog (5T
HE @] Adowa) (Tok)
"a0laT paypayaun (T6E)
NOL20L (£9€)
“AIualayu) jo asn (ZEE)
“UOREDUNI] IIaWNN (fET)
“IEULIOY Pa||ouooun (FET)
“lajyng paseg deay (zzT)
uojpalu| puewwon 5o (8s)

0

0.09, Median = 0.01

0.18, Median = 0.02
0.07, Median

Tool A: Range [0, 0.94], Average
Tool B: Range [0, 0.52], Average
Tool C: Range [0,0.94], Average

C/C++ CWEs

Balance

N

West Virginia

University

Balance values

for many CWEs
were around
30%, which

Indicates poor

overall

performance

than the other

slightly better
two tools

Tool C
performed

Tool A

=
&
[

Tool C

dooq apuiju| (SER)

Cuo o Adowaly aadd 065)

a|qEUEA pasnUn [£95)

"NIEIS JOo wn3ay (zag)

#poD peaq (195)

"o pealsu] Buuedw ol (ZE)
"R adioou] o asn (EY)

" aseD JNe jag Buissiy B4 1)
maaguod TINN (941)

BunEos 1ajulnd e Lo [Bat)

“Uo Joazs jo asn (fat)
CpaeMuIun Jo 85 (51

Baldlayy asn (ATl
Bald aqnog (ST
Hyeaq Adoway (1ot

10413 papayaun (T6E)

NOL201 [£9g)

“AjUalayul o asn (gee)
TUOIEDUN] DaWNY [fET)
"B IO pajjououn (FET)
“lajyng paseg deay (ZZ 1)

uojpalu| puewwon 50 (84

0.39, Median = 0.29
0.46, Median = 0.36
0.53, Median = 0.46

Tool A: Range [0.28, 0.65], Average
Tool B: Range [0.29, 0.87], Average

Tool C: Range [0.29,1], Average

West Virginia
University

ROC squares for C/C++ CWESs

Ideal result
(pf, pd) = (0, 1)

ROC Square for Common C/C++ CWEs with ROC Square for Common C/C+ CWEs with
Tool B 357 Tool C

ROC Square fo mon C/C++ CWEs with
Tool A a2

416 467

4017 0.70 ¢ 390
-

78 0.60
561 367 201

050 & *

541 88
050 &

550
- Ly | as7122 @ 13

. 134

563

Probability of Detection
) =
Probability of Detection

)
»
Probability of Detection
3

416

- 1%
0.20 |-457 0.20 415 0.20

0 010 020 030 040 030 080 070 0E0 030 100 000 010 020 030 040 050 060 070 080 090 100

Probability of False Alarm

Probability of False Alarm Probability of False Alarm

Not many points are close to the ideal (0,1) point
Tool C has noticeably lower false alarm rate
For each tool there are multiple CWEs at the (0,0) point

o0 010 020 030 040 050 060 070 080 090 .00

N

Accuracy: Java CWES

West Virginia
University
Accuracy values for
Java CWEs vary
100.0% somewhat more than
oo those for C/C++
5 oo | CWEs
E 50.0%
g s00% -
30.0% -
oo ool All three tools attain
S i szzizdizraresssdgzz " a maximum accuracy
Bsitigesiiioiozizgs " value for several
EE%SEHEEEEEE%EEQ%@
S E5g 282 F ET g xZ®Y W 50
*z2: B % gisgeff2
™ & m = m oW @ — in i g
= g =z il Tool C seems to be

Tool A: Range [0.41,1], Average = 0.67, Median = 0.63
Tool B: Range [0,1], Average = 0.60, Median = 0.63
Tool C: Range [0.52,1], Average = 0.73, Median = 0.67

performing slightly
better than the other
two tools

N

Recall: Java CWES

West Virginia
University
Again, there were
CWEs (i.e., 486
100.0% and 489) for which
90.0% - - - B
80.0% - 1§ 1 none of the tools
_ coo% .] T correctly flagged
B 1 i i I
& oo | T 1 T any flawed
oo | 11 1T T 1 constructs
woe L -1——8 0 1 1 0 [i L L Toal A
o e & S e 6 5t % e £ s owow = = WTas
4t 82E 2552568 83
et ifesiiigzozgzzgzs F However, not as
”éﬁDE%ELEjEEEE c c 2 B .
stsz2s8:3038:35283¢£;% many as in case of
22350558835 ¢:¢ez22 '
s 5:S883gafE3e2g 8@ C/C++ test suite
4 Es 2 -2 mET g gEeE o5
=2z ® § gs2sguoiifZ

Tool A: Range [0,1], Average = 0.49, Median = 0.50
Tool B: Range [0,1], Average = 0.35, Median = 0.18
Tool C: Range [0,1], Average = 0.36, Median = 0.17

Tool A performed
slightly better than
the other two tools

A7 Probability of false alarm: Java CWEs

West Virginia
University
Similar trend as in
case of the C/C++
100.05% false alarm values
£ 90.0%
-E 80.0%
u F00%
2 Soo% Tool C performed
g oo better than the other
g 200 EL.I_EF Tool two tools; Tool A
- " oo performed slightly

0.0% -

(497 Exposure of Systa .

wm W o £ &= b 4O = = ow Hoo= oW oW =
mmDEhE-E.EUE_ﬂ-U o T o= = o g
KEE—DDLIJH.II_EMD = = o = Tool C
z a 3% £ E c 25 g2 Bz g =38 = etter than Too
o oL 5 g w £ E o 8 2 9w =z wn = = wm = .
m w = S ow O g o B ow z +« I =€ 4o o
E w F [= R - L 2 c c 2 =
= 5 2 a8 L. 8 = d g 2 = 3 5 5 &
— 1= e
oL 5 TS @ B8 5D oL A = &£ ®m om S =
{:U-'hn“-":h—mn.zl—,_ H £ w = £ T
o o T @ oo U g - o 5 o= B om o= O
T o 2 9 0 4 — c o o % w o o =
— 5 EOC £ BT ar~ g 2 vz o= = Z
T e T 5 2, E=z o0& 5 5 W w 5 @
= -3 H T 7 ©o3 S Esg o 2
@d LT = m = [- B =~ M~ g
M = = m o m ™ —_ Y n wnn o 0
[= 3 D= = o @ Dﬁ-"—"‘—'III..—_
= T - T I =] o=
M . a2 — m
—— — -_FE_ L

Tool A: Range [0,0.94], Average = 0.24, Median =0
Tool B: Range [0,1], Average = 0.25, Median = 0.03
Tool C: Range [0,0.47], Average = 0.05, Median =0

West Virginia
University

100.0%
90.0%
80.0%
70.0%
20.0%
500%
400%
300%
200% —+
100% —+

Balance

0.0%

(113) HTTF Response..
(129) Impraopear Validation.,
(190) Integer Owverflow
(259) Hard Coded Password
(330) Insufficienthy..
(382) Use of System Exit
(396) Catch Generic.,
(404) Improper Resource,,
(476) MULL Paintear.,
(486) Compare Classas by
(489) Leftover Debug Code
(497 Exposure of System.,
(500 Public StaticField..
I568) Finalize Without.,
(570) Expression Always.,

(571) Expression Always,,

(581) Object Maodeal.,

Tool A

B TocolB

Teol C

Tool A: Range [0.29,1], Average = 0.50, Median = 0.34
Tool B: Range [0,1], Average = 0.43, Median = 0.34
Tool C: Range [0.29,1], Average = 0.52, Median = 0.41

Balance: Java CWEs

Similar trend as in
case of C/C++
balance values

For many CWEs
balance values
were around 30%,
which is an
indicator of overall
poor performance

ToolsAand C
appear to perform
slightly better than
Tool B

N

West Virginia

University

Probability of Detection
o o o

RO,

100 & 581
580

500

571

h 570

ROC squares for Java CWESs

Ideal result
(pf, pd) = (0, 1)

e for Common Java CWEs with Tool A 230 ROZSquare for Common Java CWEs with ROC Square for Commaon Java CWEs with
: 97 sm2 Tool B 330 500 TOO';%;

<04 1e * le 581 .
368 497
a1 s
09 Y2 5gE
BO
.
80 5 5
T os B os
¢ £ &
=] o 396
T o0s 5 g5 P76
z % |e
476 = =
_g - ﬁ n
L a v 113 =0
o 2 404
113 g 39 8 £
]
3 . 3
.
190
2 n2 570
]
, 129 250
. 1 e
598 3% -
0@ . 0 e
0 0.20 0.30 040 050 060 0.70 080 090 1.00 0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 09 1 0 0.1 0.2 03 0.4 05 0.6 07 08 09
Probability of False Alarm Probability of False Alarm Probability of False Alarm

Not many points are close to the ideal (0,1) point
Tool C has noticeably lower false alarm rate
For each tool there are multiple CWEs at the (0,0) point

\ CWE/SANS top 25 most dangerous

westVigiia software errors

C/C++

= CWE 78 OS Command Injection

* Tool A had the highest recall (54%), but also very high
probability of false alarm (89%)

* Tools B and C performed poorly, with recall values
around 4% and 0% respectively

* CWE 134 Uncontrolled Format String

* Tool C was the most successful (with recall close to
79%), but with high probability of false alarm (i.e., 48%)

* Tools A and B had lower recall values (i.e., around 30%
and 38%, respectively)

w2 CWE/SANS top 25 most dangerous
iy software errors

<

Java

= CWE 190 Integer Overflow

* Tool B had recall of around 27%, with relatively high false
alarm rate of almost 22%

* Neither Tool A nor Tool B detected CWE 190 (i.e. they
had 0% recall)

; | EVALUATION
; PR BASED ON REAL
f : PROGRAMS

Q/“\VZ Evaluation based on real software

West Virgin
Uni er5|ty

* Three open-source software applications
« Gzip
* Dovecot
« Apache Tomcat

= Older version with known vulnerabilities

= More recent version with the same vulnerabilities
being fixed was used as an oracle

= A total of 44 known vulnerabilities in the three
applications, mapped to 8 different CWEs

Gzip: Basic facts

* Popular open source archiving tool
= Written in C
= ~8,500 LOC

= VVulnerable version: 1.3.5 with 4 known
vulnerabilities

= VVersion with fixed vulnerabillities: 1.3.6

N

West Virginia
University

Gzip: Results

Gzip-1.3.5 version with known vulnerabilities

Tool Warnings

Tool A
Tool B
Tool C

112
36

119

Number of
detected

vulnerabilities

> True positive

1 out of 4
Ooutof4
1 out of 4

Gzip-1.3.6 version with fixed vulnerabilities

Tool Warnings

Tool A
Tool B
Tool C

206
125
374

Number of

reported

vulnerabilities

1 out of 4
O out of 4
1 out of 4

False positive

=

Dovecot: Basic facts

= IMAP/POP3 server for Unix-like operating systems
= Written in C
= ~280,000 LOC

= VVulnerable version: 1.2.0 with 8 known
vulnerabilities

= VVersion with fixed vulnerabillities: 1.2.17

West Virginia
University

Dovecot: Results

Dovecot-1.2.0 version with known vulnerabilities

Tool Warnings Number of
detected
vulnerabilities
Tool A 8,263 O out of 8
Tool B 538 O out of 8
Tool C 1,356 O out of 8

Dovecot-1.2.17 version with fixed vulnerabilities

Tool Warnings Number of
reported
vulnerabilities
Tool A 8,655 O out of 8
Tool B 539 O out of 8

Tool C 1,293 O out of 8

Tomcat: Basic facts

= Open source Java Servlet and JavaServer Pages
Implementation

= \Written in Java
= ~4 800,000 LOC

= \/ulnerable version: 5.5.13 with 32 known
vulnerabilities

= \Version with fixed vulnerabillities: 5.5.33

Tomcat: Basic facts

* Due to its much greater complexity, the majority of
Tomcat’s vulnerabilities span several files and/or
locations within each file

* 4 out of 32 vulnerabilities occur at one location
within one file

* 9 out of 32 vulnerabilities occur at multiple
locations within one file

19 out of 32 vulnerabilities occur in multiple files

= We consider a true positive found if at least one of
the file(s)/location(s) are matched by a tool

West Virginia
University

Tomcat: Results

Tomcat-5.5.13 version with known vulnerabilities

Tool Warnings Number of
detected
vulnerabilities
Tool A 12,399 7 out of 32
Tool B 12,904 3outof 32 > True positives
Tool C 20,608 5 out of 32

Tomcat-5.5.33 version with fixed vulnerabilities

Tool Warnings Number of
reported
vulnerabilities
Tool A 167,837 2 out of 32
Tool B 13,129 0 out of 32> False positives
Tool C 21,128 1 out of 32

CONCLUDING REMARKS

Conclusions

* None of the three tools produced very good results
(.e., high probabillity of detection (i.e., recall) and
low probability of false alarm)

* Tool C had the smallest false alarm rate among the
three tools (mean value of 7% for the common
C/C++ CWEs and 5% for the common Java CWES)

= Some CWEs were detected by all three tools,
others by a combination of two tools or a single
tool, while some CWEs were missed by all three
tools

West Virginia
University

Conclusions

* The results of the evaluation with real open source
programs were consistent with the evaluation
based on the Juliet test suite

* All three tools had high false negative rates (i.e. were not
able to identify majority of the known vulnerabillities)

* Tool A outperformed the other two tools on the application
Implemented in Java
» Static code analysis cannot be used as an
assurance that the software is secure. Rather, it
should be one of the techniques used, in addition
to other complementary techniques

